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Abstract

Predicting the biological activity of a compound from its chemical structure
is a fundamental problem in drug design. The ability exists to generate
vast amounts of potential pharmecutical compounds. Statistical and machine
learning methods can provide an efficient means of estimating the bioreponses
of these compounds in order to expedite drug design. In this paper we develop
a Support Vector Machine Regression (SVMr) methodology for estimating the
bioresponse of molecules based on the large sets of descriptors. Since the con-
cerned data is characterized by large numbers of descriptors and very few
data points, we adapt SVMr model selection and bagging strategies in order
to avoid overfitting. The proposed approach compares very favorably with
Partial Least Squares (PLS), a well-known and commonly used method in
chemometrics, on the performance of Quantitative Structure-Activity Rela-
tionships (QSAR) analysis based on real chemistry data.

*This work has been partially done while the first author was a graduate student in Dept.
of Decision Sciences and Engineering Systems at Rensselaer Polytechnic Institute. Project url:
http://www.drugmining.com.
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1 Introduction

The demand for the drugs to fight antibiotic-resistant bacterial infections, cancer,
AIDS and other common diseases is ever increasing. International drug companies
also face accusations from developing and third world countries for selling their
drugs at very inflated prices [10]. Because of both the complexity of diseases that
humans face and the high costs of the drugs to fight these diseases, scientists from
various disciplines feel the pressure to design and develop efficient drugs in a very
short time with minimal cost. The conventional drug design process is very long
and expensive. Finding promising compounds in the early phase of the drug design
process greatly reduces the time and the cost of such processes. One goal of the drug
design process is to find a relatively small compound (ligand) that consists of a few
dozens of atoms that binds with a receptor cavity of certain proteins or enzymes.
Receptor-ligand bindings can create necessary biological activity that leads to the
desired pharmacological features.

Developments in automated compound generation enables the creation of vast
compound (molecule) databases. Two effective ways of approaching such databases
exist: Rational Design and Combinatorial Synthesis. Combinatorial synthesis in
which many different ligands are synthesized in parallel and tested via a high
throughput screening is beyond the scope of this paper. The basic idea behind ra-
tional design is to analyze the structure/activity correlation in molecule databases
in order to predict biological activities (and possible chemical reactivity and toxi-
city) of molecules of interest. Determining the relationship between the molecule
structure and its biological activity with certain molecules enables one to analyze
the behaviour of other similar molecules.

Quantitative Structure-Activity Relationships (QSAR) analysis plays an essen-
tial role in the rational drug design process. QSAR analysis can be summarized
as the task of discovering new molecules with desired pharmaceutical properties,
especially in the early phase of the drug design process, from a pool of molecules
by analyzing structure/activity relationships. The main underlying assumption in
QSAR analysis is that the biological activities of a group of compounds can be
explained by analyzing their respective structural (physical) and electronic features
[4]. Successful QSAR analysis will expedite drug design creating enormous eco-
nomic and health benefits for both public and private sectors. On the other hand,
mistakes in QSAR analysis may cause the undesired costs of pursuing some im-
proper compounds in the drug design process and/or discarding potentially good
compounds from the drug design process.

Various analytical tools from statistics and machine learning are used in QSAR
analysis including predictive modeling (classification and regression), visualization,
exploratory data analysis through principal components and cluster analysis. In
addition to standard tools used in other fields, specialized tools have been developed
by chemometricians based on heuristic reasoning and intuitive ideas [6]. The most
popular regression tool among the chemometricians is Partial Least Squares (PLS),
which is little known and used in other fields. The popularity of PLS comes from
its ability to model very high dimensional data with very few observations on hand.
In most QSAR (chemometrics) applications the ratio of the number of predictors
to the number of observations is very high. The details of PLS are given in Section



3.

Support Vector Machines (SVM) have recently emerged as an alternative re-
gression tool [11]. The strength of SVM regression (SVMr) comes from its ability
to represent very high dimensional input space (predictors) through kernel func-
tions with great resistance to overfitting. The resulting SVM model is independent
from the dimensionality of the input space. As discussed in Section 4, instead of
using n X p data matrix, where n and p are the number of observations and the
number of predictors (features) respectively, an n x n kernel matrix is used in the
SVM model. Since QSAR applications require the analysis of data with very few
observations but a very high number of dimensions, SVM regression appears to be
a suitable analysis tool for chemometrics. For a successful SVM model, care must
be taken in the selection or parameters in the objective and kernel function. We
examine how to perform this model selection task when very little data is available.
Multiple validation sets are used within a grid search to construct a set of candidate
models. The resulting models are bagged or averaged in order to reduce variance.
We use the linear program representation proposed in [11] in order to exploit ef-
ficient optimization algorithms available for linear programs. Since the size of the
kernel matrix (n x n) is very small in QSAR data, we can extensively search the
parameter space with the help of efficient reoptimization without solving each the
underlying optimization problem from scratch. The details of our SVM regression
implementation are given in Section 5.

In Section 6, we give results of a comparison of SVMr and PLS on seven QSAR
datasets. Experimental results indicate that SVM regression outperforms PLS in
QSAR analysis. We then conclude our paper in Section 7.

2 Related Work

This paper compares only two approaches used in QSAR analysis, PLS and SVMr.
PLS is commonly used in chemometrics as an industrial standard. Other solu-
tions to the drug design process exist in the literature. Due to space limitations,
most of them can not be addressed in this paper. Nevertheless, we will mention a
few related works in this section. In our work we focus on QSAR as a regression
problem, but predicting biological activities can also be posed as a classification
problem to determine whether or not a molecule is worth further consideration in
terms of biological activity. In [4], SVM classifier was compared with Radial Ba-
sis Functions (RBF) network, neural networks, decision trees and nearest neighbor
classifier. SVM with RBF kernel was the best among the investigated methods as
measured 5-fold cross-validation (CV).

The pose of the ligand determines some of the structural features in QSAR
data. This problem also resembles that of hand-writing recognition. In [5], a neu-
ral network is trained to find the best posing of the compound that is used in
predicting the biological activity. So called dynamic reposing is compared with
other posing methods known in hand-writing recognition such as standard posing,
tangent-propagation and tangent distance [5]. Again the problem in [5] is to predict
the biological activity of compounds depending on their poses. Dynamic reposing is
an Expectation-Maximization (EM) method in a sense where the best pose is found
first and then depending on the posing biological activity is predicted. Process
continues iteratively until it reaches convergence (no change in poses). Dynamic
reposing is proposed to avoid the conformation search. But efficient algorithms
exist to search conformations which have low energy [9].



Machine learning algorithms are also used to select existing and find new features
(descriptors) in structure/activity prediction. Inductive Logic Programming (ILP)
is used in [12] to generate new features based on available structural properties. It
is indicated in [12] that new features based on ILP enhances the predictability of
the biological activity using linear regression. The variable selection problem was
addressed from the QSAR analysis point of view in [8]. Neural network sensitivity
analysis and neural bootstrapping were coupled in [8] to analyze QSAR data using
a successful variable selection approach. Chemometricians most commonly used the
PLS method. In the next section we briefly explain the PLS method and its usage.

3 Partial Least Squares

Since the introduction of PLS to chemometrics in mid-70’s (it was originally pro-
posed by H. Wold, an econometrician, in the 60’s), it has been used widely as an
alternative method to Ordinary Least Squares (OLS) regression. The driving force
behind this move was the inability of OLS to handle problems with high collinearity
among the predictors and very few observations. For many years statisticians did
not pay noticable attention to PLS until the early 90’s [6]. Statistically PLS, Prin-
cipal Component Regression (PCR) and ridge regression have many similarities [6].
A through comparison of PLS, PCR and ridge regression can be found in [6] for
interested readers. But all the three methods try to shrink the solution vector from
the OLS solution in directions where predictors have higher variations.

PLS is an iterative algorithm. PLS’ robustness comes from the fact that at each
iteration PLS shrinks (projects) the OLS solution towards the maximum correlation
between the residual error (of response y) and the input data (x). PLS recursively
computes the orthogonal projections of the input data and performs single variable
regressions along these projections on the residual error of the previous iteration
[14]. Thus the regression solution depends on the decomposition of both response
and predictor variables simultaneously.

PLS’ iterative structure allows it to find a new factor at each iteration. PLS
avoids the collinearity problem by projecting high dimensional observed variables
into lower dimensional factors. The degree of bias is dependent on the choice of
the number of factors. The smaller the number of factors, the larger bias. But a
large number of factors will produce high variance. Usually cross validation is used
to determine the number of factors used in the solution. These factors are linear
in the input data x. In the case of non-linear relationship between response and
predictors, PLS might end up with a solution that has very large bias. Like all
other linear methods, this is a weakness of PLS. Nevertheless, PLS’ robustness to
overfitting helps keep its prominent position as an analytical tool in chemometrics.
In the next section, we introduce SVM regression as a new tool in chemometrics.
This is one of the very first attempts to use SVM regression for chemometrics in
the literature.

4 SVM Regression

As a new machine learning technique SVM was proposed in the pattern recognition
context. For example, SVM was used in [4] to solve a classification problem. The
basic properties of classification SVMs also hold for regression, thus successful SVM
regression models exist [11]. We briefly introduce the linear programming SVM
regression in [11] in this section.



Let’s assume we are given a training set of (z1,y1),.- ., (Zn,yn) where z; € RP.
The objective of the learning process (in this case regression) is to find a function
f which minimizes the risk function: R[f] = [,,!(f,=,y)dP(x,y), where P is the
underlying probability distribution and [ is the appropriate loss function e.g. square
loss function. Since the true distribution of P is unknown, we need to minimize the
empirical risk, R, [f], as measured on the training data. Many recent formulations
of SVM regression use the e-insensitive loss function (Jy — f(z)|c = max{0,|y —
f(z)| — €}) to minimize the regularized risk:

Ryeg := ModelCapacity + C - RZ,,, [ f] 1)

where ModelCapacity characterizes the model complexity and C' is the constant
regularization parameter (trade-off). For e-insensitive loss function, the empirical
risk becomes RS, [f] == L 30 | |yi — f(@s)|.-

The power of SVM comes from the kernel representation that allows a non-
linear mapping of input space to a higher dimensional feature space. The regression
function can be written as a linear combination of mapped training examples z;.
Thus one obtains the well known kernel expansion of function f as:

n

flz) = Zaik(mi,w) +b

i=1

where o’s are the multipliers, k(z,z') is the kernel function and b is the bias.

For the linear program (LP) model, the ModelCapacity in Eq. 1 is measured to
produce the function f with the smallest nonnegative combination of the patterns
it Rpeg := Y1y i+ C- RS, [f]. In the e-insensitive loss function term, ¢ is typ-
ically a user specified parameter. If we also want to include € into our optimization

problem then we have the following LP formulation of SVM regression:
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At optimality & + & = |y — f(2)]e.

To successfully apply the SVM regression LP (2), one must prepare the data,
select the model parameters (C, v), select the kernel function and associated param-
eters and then optimize the models. In this work, we used the radial basis function
kernel with parameter o

k(zi, z;) = exp(—||z; — ;]|*/0?) (3)

In the next section we describe our methodology for accomplishing these steps for
QSAR problems.

5 Our SVMr Methodology

QSAR is a very difficult inference problem because the dimensionality of the input
space is very high, (600 to 1000 variables) and the amount of training data is small



(frequently less than 100 observations). The risk of overfitting and obtaining poor
generalization is great. Careful model selection and validation is essential for good
results using SVMr. We utilize a multiple step process. First the data is prepared
by normalizing it and removing high variance variables. Then we perform a model
selection procedure by optimizing the model error as measured on validation sets.
This produces multiple candidate SVM models. Since the validation sets are of
necessity very small, there is a very high variance in the set of SVM models. Thus
the final step is to average or bag the models in order to improve the final model
accuracy. These steps are described in detail in this section.

Successful data analysis starts with careful data preparation. The first step for
both PLS and SVMTr is to normalize the data. Often chemical and physical variables
have different units of measurements. Thus variables vary in very different ranges.
This is very problematic for any data analysis tool. Having different magnitude of
variables also affects the kernel function. Certain variables might have much more
importance in the learning process than they deserve or vice versa. The SVMr
method in this paper is provided standard normalized data. Since the response
variables are log-scaled response, they are not normalized. We use the RBF kernel
function, the most used kernel in the SVM regression literature. Typically SVM
models with RBF kernel functions perform better with normalized data. In addition
in order to prevent outliers’ effects on the kernel function mapping, we screened our
original data to remove the variables that have values outside of the £4¢ range. No
other feature selection is done for SVMr in this paper. But feature selection can
be added to further improve the performance of SVMr, PLS, and other learning
methods [8].

The next step in the SVMr process is to select the model parameters and opti-
mize the model. As seen from Eq. 2, there are three parameters in this particular
LP formulation: C, v and the parameter o2 of the kernel function k. Optimiza-
tion of the LP can be readily accomplished using commercial LP packages. We use
CPLEX 6.5 [7] to solve our LP model. The primary research challenge is how to
select the model parameters. Our strategy is to optimize the model error as mea-
sured on a validation set across a fixed set of possible parameters. The core of our
SVM regression implementation is to use reoptimization to speed up the exhaustive
parameter search. CPLEX can very efficiently reoptimize the LP after changes in
the objective parameters, C' and v. Thus, we build three loops in our program to
change the parameters. In the most inner loop, we change v and in the next loop we
change C. Finally in the outer loop, we change the kernel parameter. The reason
behind this is that we put the parameter v in the most inner loop because we expect
that any change in v will effect the current LP solution the least. Then parameter C
and then the parameter of the kernel function k. C and v only affect the objective
function. On the other hand, change in the kernel parameter affects the constraint
matrix of the LP. Reoptimization after changes in the constraint matrix is much
more costly.

To make our model strategy robust on QSAR problems, we have one final step.
Typically we take our validation set to be 10% of the training set. For small QSAR
problems in high dimensions, changes in the validation set can result in very different
models with high variance in accuracy. To make the method more robust, we
construct several models using different validation sets, and then average them to
produce a final model. This is a form of bagging [1]. Since a linear combination of
SVMr functions is another SVMr function, the final model is still a SVMr function
but it is far more robust than any function constructed using a single validation set.

In the next section we compare PLS and SVM regression based on the above



Table 1: Cross Validated Testing Set Results

Original
Dataset No of Obs. No of Vars. No of Vars. ¢? PLS ¢?> SVMr
Aquasol 197 640 149 0.374 0.086
Blood/Brain Barrier 62 694 569 0.350 0.352
Cancer 46 769 362 0.438 0.623
Cholecystokinin 66 626 350 0.387 0.353
HIV 64 620 561 0.351 0.274
Malaria-1 76 1181 685 0.650 0.576
Malaria-2 76 1181 685 0.668 0.500
Table 2: Parameter Sets

Parameter | Values

v 0.05, 0.1, 0.15, 0.2, 0.3, 0.35

C 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000

RBF o2 100, 200, 300, 400, 500, 650, 800, 1000, 3200, 5000, 6400

LP formulation (Eq. 2). OQur SVM implementation reoptimizes the LP model for
various parameter sets efficiently.

6 Experimental Results on QSAR Data

We conducted experiments based on the data provided by Electron Density-Derived
Molecular Surface Area (EDDMSA) methodology [2] an improved version of Dr.
Breneman’s Transferable Atom Equivalent (TAE) methodology [3]. The datasets
used in this section were created in an ongoing NSF funded Drug Design and Semi-
supervised Learning (DDASSL) project (See http://www.drugmining.com). Basi-
cally, EDDMSA maps each compound to a larger set of spatially-resolved property
variables of a type that has been shown to correlate with intermolecular activities.
These variables are combined with the traditional topological variables to form the
data for the QSAR analysis. Ten-fold cross validation was used in our experiments.
We use exactly same training and test sets for both PLS and SVM regression. Table
1 summarizes the results. The malaria dataset has two possible response variables,
each of them was modeled separately.

As we mentioned in the previous section, we screened our original data to remove
the variables that have values out of the +£4¢ range. This is a common practice in
commercial analytical tools used in chemometrics too. Thus we report two num-
bers of variables: The first one is before screening the data and the second one is
after screening the data. This is a very primitive variable selection but our initial
experiments showed that the screening never hurts and usually improves the results.

We used PLS procedure of SAS [13] with RLGW option for the PLS algorithm,
since we have many factors. We picked the optimum number of factors based on
the leave-one-out error for the each training set. We then predicted the test data
based on the resulting PLS model. For the other options we used the SAS defaults.



In SVM regression experimental setup, one fold was reserved for the test data
and another fold was reserved for the validation and eight folds are used for the
training data. This is repeated for each possible validation fold. Thus for each test
point, there are 9 predictions. As discussed above there is a high variance due to
the use of the very small validation sets. Different sets results in greatly different
models so we need to make the methods more robust. We use the average the
outputs of 9 different model as our final prediction. This is a form of bagging [1].
This particular setup of the test, validation and training data also halves the total
number of different models for a given parameter set from 90 to 45. We use same
parameter sets (See Table 2) for all the datasets. Although the final number of
different LP models is equal to 29700 (45 x 6 x 10 x 11 = 29700), it takes a fraction
of the time (less than five minutes for many of the datasets) to reoptimize them
compared to the time to solve them from scratch.

We use the following statistics to compare two methods:

2 _ E?:l(gi - yi)2
i (yi — 9)?

where g; and § are the predicted and the mean value of the response variable y
respectively. This is indeed equal to 1 — R?. But many chemometricians prefer
the g2 statistics. The lower the value of ¢2, the better the model is. Experimental
results are also given in Table 1. SVM regression performed as good or significantly
better than PLS on all datasets except Cancer.

7 Conclusion

We have developed an effective methodology for application of Support vector re-
gression to QSAR analysis. The first step is to scale the data and eliminate high
variance features. To perform model selection, we utilize a linear programming SVM
regression model that enables very efficient reoptimization after changes of model
parameters. We perform an ordered grid search over a fixed set of parameters. The
best model is picked based on the validation set error. Since there is high variance
due to the small validation size, this process is repeated for different validation sets,
and the resulting models are bagged or averaged. The final SVM regression model
is very robust and outperforms PLS on most datasets. Currently we are working
on enhancements to this SVM methodology including feature selection to further
reduce the input dimensionality, more efficient model search methods, and applica-
tions to other drug design applications, e.g. high-throughput screening.
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