A Column Generation Algorithm For Boosting

Kristin P. Bennett

BENNEKQRPI.EDU

Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

while visiting Microsoft Research, Redmond, WA USA

Ayhan Demiriz

DEMIRA@RPI.EDU

Dept. of Decision Sciences and Engineering Systems, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

John Shawe-Taylor

JSTQDCS.RHBNC.AC.UK

Dept. of Computer Science, Royal Holloway, University of London Egham, Surrey TW20 0EX, UK

Abstract

We examine linear program (LP) approaches
to boosting and demonstrate their efficient
solution using LPBoost, a column generation
simplex method. We prove that minimizing
the soft margin error function (equivalent to
solving an LP) directly optimizes a general-
ization error bound. LPBoost can be used
to solve any boosting LP by iteratively op-
timizing the dual classification costs in a re-
stricted LP and dynamically generating weak
learners to make new LP columns. Unlike
gradient boosting algorithms, LPBoost con-
verges finitely to a global solution using well
defined stopping criteria. Computationally,
LPBoost finds very sparse solutions as good
as or better than those found by ADABoost
using comparable computation.

1. Introduction

Recent papers (Schapire et al., 1998) have shown that
boosting, arcing, and related ensemble methods (here-
after summarized as boosting) can be viewed as mar-
gin maximization in function space. By changing the
cost function, different boosting methods such as Ad-
aBoost can be viewed as gradient descent to minimize
this cost function. Some authors have noted the possi-
bility of choosing cost functions that can be formulated
as linear programs (LP) but then dismiss the approach
as intractable using standard LP algorithms (Ratsch
et al., 1999; Breiman, 1999). In this paper we show
that LP boosting is computationally feasible using a
classic column generation simplex algorithm (Nash &
Sofer, 1996). This method performs tractable boosting
using any cost function expressible as an LP. We specif-

ically examine the variations of the 1-norm soft margin
cost function used for support vector machines (Ratsch
et al., 2000; Bennett, 1999; Mangasarian, 2000).

In Section 2, we prove that this approach directly min-
imizes a bound on the generalization error. In Sec-
tion 3, we discuss the soft margin LP formulation and
provide an insightful explanation of how it works for
boosting. In Section 4, we describe the column gener-
ation algorithm. Computational results and practical
issues for implementation of the method are given in
Section 5.

2. Motivation for Soft Margin Boosting

The function classes that we will be considering are of
the form co(H) = {3, .y anh : ap, > 0}, where H is
a set of weak learners which we assume is closed under
complementation. Initially, these will be classification
functions with outputs in the set {—1,1}, though this
can be taken as [—1,1] in confidence-rated boosting.
We begin, however, by looking at a general function
class and quoting a bound on the generalization er-
ror in terms of the margin and covering numbers. We
first introduce some notation. If D is a distribution
on inputs and targets, X x {—1,1}, we define the er-
ror errp(f) of a function f € F to be the probability
D{(x,y) : sgn(f(x)) # y}, where we assume that we
obtain a classification function by thresholding at 0 if
f is real-valued.

Definition 2.1. Let F be a class of real-valued func-
tions on a domain X. A ~y-cover of F with respect to
a sequence of inputs S = (X1,X2,...,Xm) is a finite
set of functions A such that for all f € F, there exists
g € A, such that maxi<;<m (|f(%:) — g(x:)|) <~. The
size of the smallest such cover is denoted by N(&F, S,),

while the covering numbers of F are the values

N(F,m,) = max N(F,5,7).

Throughout the remainder of this section we will as-
sume a training set S = ((x1,%1);--- ; (Xm, Ym)) . For
a real-valued function f € F we define the mar-
gin of an example (x,y) to be yf(x), where again
we implicitly assume that we are thresholding at 0.
The margin of the training set S is defined to be
ms(f) = ming<;<m (v f(xi)) -

Note that this quantity is positive if the function cor-
rectly classifies all of the training examples. The
following theorem is given in (Cristianini & Shawe-
Taylor, 2000) but is implicit in the results of (Shawe-
Taylor et al., 1998).

Theorem 2.1. Consider thresholding a real-valued
function space F and fix v € RT. For any probability
distribution D on X x {—1, 1}, with probability 1 — ¢
over m random examples S, any hypothesis f € F that
has margin mg(f) >~ on S has error no more than

errp(f) < e(m, F,6,7) = % (long(ff, 2m, %) +log %)

provided m > 2/e.

We now describe a construction originally proposed in
(Shawe-Taylor & Cristianini, 1999) for applying this
result to cases where not all the points attain the mar-
gin v. Let X be a Hilbert space. We define the follow-
ing inner product space derived from X.

Definition 2.2. Let L(X) be the set of real-valued
functions f on X with countable support supp(f), that
is, functions in L(X) are non-zero only for countably
many points. Formally, we require

L(X) = {f c RX: supp(f) is countable and }

Yoxesupp(s) 1(%)* < o0

We define the inner product of two functions f,g €
L(X) by (f-g) = ersupp(f) f(x)g(x). This implicitly
defines a norm || - ||2. We also introduce

>

xesupp(f)

1fllh = FACIIE

Note that the sum that defines the inner prod-
uct is well-defined by the Cauchy-Schwarz inequality.
Clearly the space is closed under addition and multi-
plication by scalars. Furthermore, the inner product
is linear in both arguments.

We now form the product space X x L(X) with corre-
sponding function class F x L(X) acting on X x L(X)
via the composition rule

(f:9) : (x,h) ¥ f(x) + (g~ h).
Now for any fixed 1 > A > 0 we define an embedding
of X into the product space X x L(X) as follows:

TA X — (%, Ady),

where dx € L(X) is defined by dx(y) =1 if y = x, and
0 otherwise.

Definition 2.3. Consider using a class F of real-
valued functions on an input space X for classification
by thresholding at 0. We define the margin slack vari-
able of an example (x;,y;) € X x {—1, 1} with respect
to a function f € F and target margin -y to be the quan-
tity § ((xi, i), f,7) = & = max (0, v — y; f(x;)) . Note
that & > ~ implies incorrect classification of (X;, ;).

The construction of the space X x L(X) allows us to
obtain a margin separation of vy by using an auxiliary
function defined in terms of the margin slack variables.
For a function f and target margin v the auxiliary
function with respect to the training set S' is

= % Zfzyzlsxl .
=1

It is now a simple calculation to check the following
two properties of the function (f, gf) € F x L(X):

m

Z 5 ((Xia yl)) fa 7) yi5xi

i=1

1
gf:Z

1. (f,gs) has margin 7 on the training set 7a(S).
2. (f.g5)Ta(x) = f(x) for x ¢ S.

Together these facts imply that the generalization er-
ror of f can be assessed by applying the large margin
theorem to (f, gf). This gives the following theorem:

Theorem 2.2. Consider thresholding a real-valued
function space F on the domain X. Fiz v € RT and
choose § C F x L(X). For any probability distribu-
tion D on X x {—1,1}, with probability 1 — 6 over m
random examples S, any hypothesis f € F for which
(f,g5) € G has generalization error no more than

2 2
errp(f) <e(m,F,6,7) = - (logN(S, 2m, %) + log S)

provided m > 2/e, and there is no discrete probability
on misclassified training points.

We are now in a position to apply these results to
our function class which will be in the form described

above, F = co(H) = {ZheH arh :ap > O}, where we
have left open for the time being what the class H of
weak learners might contain. The sets G of Theorem
2.2 will be chosen as follows:

Sp = {(Z ahh,g> : Z ap + gl < B, an 20}-

hecH heH

Hence, the condition that a function f = 3, 5 aph
satisfies the conditions of Theorem 2.2 for § = Gp is
simply

ZheH ap + % Z;’ilf ((xia yi) 3 fa ’Y) (1)

=Y hemtn+x 2 & < B.

Note that this will be the quantity that we will mini-
mize through the boosting iterations described in later
sections, where we will use the parameter C' in place
of 1/A and the margin v will be set to 1. The final
piece of the puzzle that we require to apply Theorem
2.2 is a bound on the covering numbers of §p in terms
of the class of weak learners H, the bound B, and the
margin . Before launching into this analysis, observe
that for any input x,

I}?z%({|h(x)|} =1, while maxAdy,(x) <A<,
S X

2.1 Covering Numbers of Convex Hulls

In this subsection we analyze the covering numbers
N(Sp, m,7) of the set

S = {(Z ahh;!]) : Zah+\|g||1 < B, ap 20}

hcH heH

in terms of B, the class H, and the scale 7. Assume
first that we have an 7/ B-cover G of the function class
H with respect to the set S = (x1,X2,...,Xy,) for
some n < . If H is a class of binary-valued functions
then we will take n to be zero and G will be the set
of dichotomies that can be realized by the class. Now
consider the set V' of vectors of positive real numbers
indexed by GU {1,...,m}. Let Vp be the function
class Vi = {g (g -v) s v € Vi |lull, < B. g, <1},
and suppose that U be an (y — n)-cover of Vp. We
claim that the set

A= {(Z vhh,zm:vi&xi> ve U}

heG i=1

is a ~-cover of Gp with respect to the set 7a(S).
We prove this assertion by taking a general function
f= (ZheH ahh,g) € §p, and finding a function in A
within « of it on all of the points 7a(x;). First, for
each h with non-zero coefficient ay, select hed , such

that ‘h(xl) — }AL(XZ)‘ < /B, and for b € G set vy =
Yoo @n and v; = g(x;)/A, i =1,...,m. Now we
form the function f = (3. vnh, Yoitq vidx,) , Which
lies in the set Vp, since >, .o an+ Y 1oq v; < B. Fur-
thermore we have that

|F(7a(x;)) = F(ralx;))]

= ZheH ahh(xj) + g(f(j) - Zheg 'Uhh(xj) - Avj|
> hen Ok (h(xj) — h(xj))

B 2 hem Gh <1

IN A

Since U is a v — 7 cover of Vp there exists v € U
such that f = (3,cq Onhs S0 9i0x,) is within v — 7
of f on 7a(x;), j = 1,...,m. It follows that fis
within v of f on this same set. Hence, A forms a
v cover of the class Gg. We bound |A| = |U| using
the following theorem due to (Zhang, 1999), though a
slightly weaker version can also be found in (Anthony

& Bartlett, 1999).

Theorem 2.3. (Zhang, 1999) For the class Vp de-
fined above we have that

144B2
3 (2+ In(|G| + m))

log<2 [£+2—‘m+1).
Y

Hence we see that optimizing B directly optimizes the
relevant covering number bound and hence the gen-
eralization bound given in Theorem 2.2 with § = Gp.
Note that in the cases considered |G/ is just the growth
function By (m) of the class H of weak learners.

logN(Vg,m,7y) < 1+

3. LP Approaches to Boosting

The quantity B defined in Equation (1) can be opti-
mized directly using an LP. The LP is formulated as if
all possible labelings of the training data by the weak
learners were known. The LP minimizes the 1-norm
soft margin cost function used in support vector ma-
chines with the added restrictions that all the weights
are positive and the threshold is assumed to be zero.
This LP and variants can be practically solved using a
column generation approach. Weak learners are gener-
ated as needed to produce the optimal support vector
machine based on the output of all the weak learners.
In essence the base learner become an ‘oracle’ that
generates the necessary columns. The dual variables
of the linear program provide the classification costs
needed by the learning machine. The column gener-
ation procedure searches for the best possible classifi-
cation costs in dual space. Only at optimality is the
actual ensemble of weak learners constructed.

3.1 LP Formulation

Let the matrix H be a m by n matrix of all the la-
belings of the training data using functions from H.
Specifically H;; = hj(z;) is the label (1 or — 1) given
by weak learner h; € 3 on the training point x;. Each
column H ; of the matrix H constitutes the output of
weak learner h; on the training data, while each row
H; gives the outputs of all the weak learners on the
example z;. There may be up to 2™ distinct weak
learners.

The following linear program can be used to minimize
the quantity in Equation (1):

minge 35 ai + CY &
s.t. yiHia+§>1, §2>0,i=1,...,m (2)
a; >0,2=1,...,n

where C' > 0 is the tradeoff parameter between mis-
classification error and margin maximization. The

dual of LP (2) is
max, ..U
s.t. Z:’;l uiyiHij < 1, _] = 1, R 12 (3)
OS’LLZSC i:l,...,m

Alternative soft margin LP formulations exist, such as
this one for the v-LP Boosting!. (Ratsch et al., 1999):

maxae, p— DY &

s.t. yHia+&>p, i=1,...,m (4)
Sriai=1, &>0,i=1,...,m
ajZO, i=1,...,n

The dual of this LP (4) is:

min, J
st Y wyiHip <B,j=1,...,n
Sirtiui=1,0<u; <D, i=1,...,m

(5)

These LP formulations are exactly equivalent given the
appropriate choice of the parameters C and D.

Theorem 3.1 (LP Formulation Equivalence).
If LP (4) with parameter D has a primal solution
(@,p > 0,§) and dual solution solution (u,[3), then

(a = %,é = %) and (1 = %) are the primal and dual

solutions of LP (2) with parameter C' = %. Simi-
larly, if LP 2 with parameter C has primal solution

(@ # 0,§) and dual solution solution (i # 0), then

(P = ﬁﬁ/: ip,& = &p) and (B = ﬁaﬂ:

4f3) are the primal and dual solutions of LP (4) with
parameter D = C(.

We remove the constraint p > 0 since p > 0 at opti-
mality under the complementation assumption.

Proof. The necessary and sufficient conditions for LP
optimality are primal feasibility, dual feasibility, and
equality of the primal and dual objectives. For the
optimal solutions of LP (4): (@, p, &) and (4, 3), primal
feasibility of LP (4) implies primal feasibility of LP (2):

popp
&ZQz:L.,m

Using the equality of the objectives, p — DY1" & =
B, and substitution, >; a; + CY" & = L+

m A

5% &= % =Y ", 4;. A similar argument holds
for the second assertion. 0O

Practically we found v-LP (4) with D = =, v €
(0, 1) preferable because of the interpretability of the
parameter (see (Ratsch et al., 2000)). To maintain
dual feasibility, the parameter v must maintain % <=
D <= 1. By picking v we can force the minimum
number of support vectors. The number of support
vectors will be the number of points misclassified plus
the points on the margin, and thus can be used as a
heuristic for choice of v.

LP (4) has a very interesting interpretation. The dual
LP assigns classification costs u; to each point such
that the v; sum to 1. The constraint >, w;y; H;; < 8
“scores” each weak learner h;. The score is the
weighted sum of the correctly classified points minus
the weighted sum of the incorrectly classified points.
The set of best weak learners has a score of (3. If the
class of weak learners is closed under complementa-
tion, we can safely assume that 8 > 0 since any weak
learner with negative cost has a complementary weak
learner with positive cost. The objective minimizes §
so the optimal classification cost u is the most pes-
simistic one, i.e. it minimizes the maximum score on
all the weak learners. From complementary slackness,
only the weak learners with scores equal to 3 can have
positive weights a; in the primal space. The optimal
ensemble is a linear combination of the weak learners
that perform best under the most pessimistic choice
of classification costs. This interpretation closely cor-
responds to the game strategy approach of (Breiman,

1999) (also an LP solvable by LPBoost.) A notable
difference is that LP (5) has an upper bound on the
classification costs u that is produced by the introduc-
tion of the soft margin in the primal.

4. Column Generation Algorithm

Since the matrix H has a very large number of
columns, prior authors have dismissed the idea of solv-
ing LP formulations for boosting as being intractable
using standard LP techniques. But column genera-
tion (CG) techniques for solving such LPs have existed
since the 1950’s and can be found in LP text books see
for example (Nash & Sofer, 1996, Section 7.4). The
idea of CG is to restrict the primal problem (2) by
considering only a subset of all the possible labelings
based on the weak learners generated so far; i.e., only
a subset H of the columns of H is used. The LP solved
using H is typically refered to as the restricted master
problem. Solving the restricted primal LP corresponds
to solving a relaxation of the dual LP. The constraints
for weak learners that have not been generated yet are
missing. One extreme case is when no weak learners
are considered. In this case the optimal dual solution
is 4; = % (with appropriate choice of D). This will
provide the initialization of the algorithm.

If we consider the unused columns to have a; = 0,
then @ is feasible for the original primal LP. If (4, 3) is
feasible for the original dual problem then we are done
since we have primal and dual feasibility with equal
objectives. If a is not optimal then (i, B) is infeasible
for the dual LP with full matrix H. Specifically, the
constraint Zyil Uy Hyj < ﬁ is violated for at least one
weak learner. Or equivalently, > | 4,y H;; > 3 for
some j. Of course we don’t want to a priori generate
all columns of H (H ;), so we use our weak learner as
an oracle that either produces H.j, > i", d;y;H;; > ﬁA
for some j or a guarantee that no such H ; exists.
To speed convergence we would like to find the one
with maximum deviation, that is, the weak learning
algorithm 3(S, u) must deliver a function h satisfying

; yih(xs)i; = max ; Gyih(x;) (6)

Thus ; becomes the new misclassification cost for ex-
ample i that is given to the weak learning machine
to guide the choice of the next weak learner. One of
the big pay offs of the approach is that we have a
stopping criterion. If there is no weak learner h for
which Y7 dyih(z;) > /3, then the current combined
hypothesis is the optimal solution over all linear com-
binations of weak learners.

We can gauge the cost of early stopping since if
maxpege y iy Wiyih(z;)) < B + €, for some € > 0,
we can obtain a feasible solution of the full dual prob-
lem by taking (a, B+ €). The value V of the optimal
solution can be bounded between B <V< B +e¢e. This
implies that, even if we were to potentially include a
non-zero coefficient for all the weak learners, the value
of the objective p — D 227;1 & can only be increased
by at most e.

We assume the existence of the weak learning algo-
rithm (.S, u) which selects the best weak learner from
a set H closed under complementation using the crite-
rion of equation (6). The following algorithm results

Algorithm 4.1 (LPBoost).

Given as input training set: S
n 0 No weak learners
a<— 0 All coefficients are 0
p—0
REPEAT
n—mn+1
Find weak learner using equation (6) :
hy, — H(S, uw)
Check for optimal solution:
If 221 wiyihn (i) < Byn «—n —1, break
Solve restricted master for new costs:

, %) Corresponding optimal dual

argmin 3
s.t. S uyihg () < B
(u. B) j=1,...,n
0<u; <D, i=1,....m
END

a «— Lagrangian multipliers from last LP
return n, f = Z?:l a;h;

With small changes this algorithm can be adapted to
perform any of the LP boosting formulations by simply
changing the restricted master LP solved and the opti-
mality conditions checked. Assuming the base learner
solves (6) exactly, LPBoost is a dual simplex algorithm
(Nash & Sofer, 1996). Thus it inherits all the ben-
efits of the simplex algorithm. Benefits include: 1)
Well defined exact and approximate stopping criteria.
Typically ad hoc termination schemes, e.g. a fixed
number of iterations, must be used for the gradient-
based boosting algorithms. 2) Finite termination at
a globally optimal solution. In practice the algorithm
generates few weak learners to arrive at an optimal so-
lution. 3) The optimal solution is sparse and thus uses
few weak learners. 4) The algorithm is performed in
the dual space of the classification costs. The weights
of the optimal ensemble are only generated and fixed

Table 1. Average Accuracy of Boosting using Stumps: #
of weak learners = (n) for LPBoost, and 100, 1000 for
AdaBoost.

Dataset LPBoost (n) AB-100 AB-1000
Cancer 0.9657 (14.7) 0.9542 0.9471
Heart 0.7946 (70.8) 0.8182 0.8014
Sonar 0.8702 (85.7) 0.8077 0.8558
Tono 0.9060 (87.6) 0.9060 0.9031
Diag 0.9613 (54.2) 0.9684 0.9701
Musk 0.8824 (205.3) 0.8403 0.8908

at optimality. 5) High-performance commercial LP al-
gorithms optimized for column generation exist that
do not suffer from the numeric instability problems
reported for boosting (Bauer & Kohavi, 1999). It is
not necessary that the base leaner solve (6) exactly.
All that is needed for convergence (assuming no prob-
lems with cycling) is that hypothesis h,, satisfying
Yo uyihe(x;) > [be generated. If it fails to do
this when such a hypothesis exists then the algorithm
may terminate prematurely.

5. Computational Experiments

Two sets of experiments to compare the performance
of LPBoost and AdaBoost were performed: one boost-
ing decision tree stumps on smaller datasets and one
boosting C4.5 (Quinlan, 1996) on large datasets with
noise. The rationale was to first evaluate LPBoost
where the base learner solves (6) exactly, then to ex-
amine LPBoost in a more realistic environment.

5.1 Boosting Decision Tree Stumps

We used decision tree stumps as a base learner on six
UCI datasets: Cancer (9,699), Heart (13,297), Sonar
(60,208), Ionosphere (34,351), Diagnostic (30,569),
and Musk (166,476). The number of features and num-
ber of points in each dataset are shown in parentheses
respectively. We report testing set accuracy for each
dataset based on 10-fold Cross Validation (CV). We
generate the decision stumps based on the mid-point
between two consecutive points for a given variable.
Both LPBoost and AdaBoost search for the best weak
learner which returns the least weighted misclassifi-
cation error at each iteration. LPBoost takes advan-
tage of the fact that each weak learner need only be
added once since the weight on the weak learner may
be changed. Thus once a decision stump is added to
the ensemble it is no longer considered. Adaboost con-
siders all decision stumps at each iteration. The pa-
rameter v for LPboost was set using a simple heuristic:

0.1 added to previously reported error rates on each
dataset in (Bennett & Demiriz, 1999) except for the
Cancer dataset. Specifically the values of v in the same
order of the datasets given above were (0.2, 0.25, 0.3,
0.2,0.1,0.25). Results for Adaboost were reported for
maximum of iterations of 100 and 1000. The 10-fold
average accuracies are reported in Table 1.

LPBoost performed very well both in terms of classifi-
cation accuracy, number of weak learners, and training
time. There is little difference between the accuracy of
LPBoost and the best accuracy reported for AdaBoost
using either 100 or 1000 iterations. There was only a
significant difference between LPBoost and the best
AdaBoost accuracy (based on p-value of 0.1) on the
Heart dataset. The variation in AdaBoost for 100 and
1000 iterations illustrates the importance of well de-
fined stopping criteria. Typically, AdaBoost only ob-
tains its solution in the limit and thus stops when the
maximum number of iterations (or some other heuris-
tic stopping criteria) is reached. There is no magic
number of iterations good for all datasets. LPBoost
has a well defined stopping criterion that is reached in
a few iterations. It uses few weak learners. There are
only 81 possible stumps on the Breast Cancer dataset
(9 attributes having 9 possible values), so clearly Ad-
aBoost may require the same tree to be generated mul-
tiple times. LPBoost generates a weak learner only
once and can alter the weight on that weak learner at
any iteration. The run time of LPBoost is proportional
to the number of weak learners generated. Since the
LP package that we used, CPLEX 4.0 (CPLEX, 1994),
is optimized for column generation, the cost of adding
a column and reoptimizing the LP at each iteration is
small. An iteration of LPBoost is only slightly more
expensive than an iteration of AdaBoost. The time
is proportional to the number of weak learners gener-
ated. For problems where LPBoost generates far fewer
weak learners it is much less computationally costly.

In the next subsection, we test the practicality of our
methodology on larger datasets.

5.2 Boosting C4.5

LPBoost with C4.5 performed well on large datasets
after some operational challenges were solved. In con-
cept boosting using C4.5 is straight forward since the
C4.5 algorithm accepts classification costs. But C4.5
only finds a good solution not guaranteed to maximize
(6). Another challenge is that the classification costs
determined by LPBoost are sparse, i.e. u; = 0 for
many of the points. The dual LP has a basic feasible
solution corresponding to a vertex of the dual feasi-
ble region. Only the variables corresponding to the

basic solution can be nonnegative. So while a face of
the region corresponding to many nonnegative weights
may be optimal, only a vertex solution will be chosen.
With many u; = 0, the c4.5 solutions based on data
subsets were not very helpful over the full data, thus
LPBoost made little improvement in 25 iterations over
the first equal cost solution. Other authors have re-
ported problems with underflow of boosting (Bauer &
Kohavi, 1999). When LPBoost was solved to optimal-
ity on decision stumps with full evaluation of the weak
learners, this problem did not occur.

Stability was greatly improved by adding minimum
classification weights to the dual LP (5) :
min, J
s.t. Zgl uiyiHij S ﬁ, j = 1, B (7)
S up=1

D <u;<D,i=1,...,m

where D = L and D' = 2

K vm | 25vm”
primal problem is

The corresponding

maxXa,¢,p p+D Z:il Ti_DZ;il &i

s.t. yiHia+& >p+1,i=1,...,m 8)
Yiiai=1,,a;>0,j=1,....,n
£ >0,i=1,...,m

The primal problem maximizes two measures of soft
margin: p corresponds to the minimum margin ob-
tained by all points and 7; measures the additional
margin obtained by each point. AdaBoost also min-
imizes a margin cost function based on the margin
obtained by each point.

We ran experiments on two larger datasets: Forest and
Adult, from UCI(Murphy & Aha, 1992). Forest is a
54-dimension dataset with 7 possible classes. The data
are divided into 11340 training, 3780 validation and
565892 testing instances. There are no missing values.
LPBoost was adopted to the multiclass by defining
hj(x;) = 1 if instance x; is correctly classified by weak
learner hj; and -1 otherwise. This is only one way to ad-
dress the multiclass problem and further investigation
is needed to determine if it is the most appropriate.
The 15-dimensional Adult dataset has 32562 training
and 16283 testing instances. One training point which
has a missing value for a class label has been removed.
We use 8140 instances as our training set and the re-
maining 24421 instances as the validation set. Adult
is a two-class dataset with missing values. The default
handling in C4.5 has been used for missing values. In
order to investigate the performance of boosted C4.5
with noisy data, we introduced 15% label noise for
both the Forest and Adult datasets.

The v parameter used in LPBoost and the number
of iterations of AdaBoost can significantly affect their

0.85

0.80

0.75 7

0.70 7

T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Parameter

Figure 1. Forest Validation Set Accuracy by v Value
Circles are no noise and triangles are with noise.

Table 2. Results from Boosting C4.5

Dataset LPBoost AdaBoost C4.5

Original Forest 0.7320 0.7398 0.6638
+ 15% Noise 0.6934 0.6883 0.5927
Original Adult 0.8503 0.8371 0.8288
+ 15% Noise 0.8121 0.7744 0.7625

performance. Thus accuracy on the validation set was
used to pick the parameter v for LPBoost and the
number of iterations. Due to the excessive compu-
tational work, we limit the maximum number of it-
erations at 25 for both LPBoost and AdaBoost as in
(Bauer & Kohavi, 1999). AdaBoost used 5 weak learn-
ers on the Adult dataset with 15% noise and 23 weak
learners on the Forest dataset with 15% noise. On
all other runs both algorithms terminated at 25 weak
learners. Figure 1 shows the validation accuracy for
LPBoost on the Forest. The testing set results for v
with the best validation set accuracy are given in Ta-
ble 2 (v = .05 for all datasets except v = .04 on For-
est with noise). LPBoost was very comparable with
AdaBoost in terms of CPU time. As seen in Table 2,
LPBoost is perfroms very well in comparison with Ad-
aBoost when the validation set is used to pick the best
parameter settings. Computational time is dominated
by the C4.5 costs . The reoptimization cost of LPBoost
at each iteration is very small. On an IBM RS-6000,
the CPU times in seconds for 25 boosting iterations
were LPBoost: 89 and AdaBoost: 107 for Adult and
LPBoost: 930 and AdaBoost: 717 for Forest.

6. Discussion and Extensions

We have shown that LP formulations of boosting are
both attractive theoretically in terms of generaliza-
tion error bound and computationally via column gen-
eration. We showed the equivalence of our original
soft margin formulation and the v formulation (Ratsch
et al., 2000) and found an interpretation closely related
to (Breiman, 1999). The LPBoost algorithm can be
applied to any boosting problem formulated as an LP.
With modification of the original LP, the method per-
formed very well in practice on large datasets. From
an optimization perspective, LPBoost has many ben-
efits over gradient-based approaches: finite termina-
tion, numerical stability, well-defined convergence cri-
teria, very fast algorithms in practice, and fewer weak
learners in the optimal ensemble. LPBoost may be
more sensitive to inexactness of the base learning al-
gorithm. But through modification of the base LP, we
were able to obtain very good performance in large
noisy datasets. The question of what is the best LP
formulation for boosting remains open. Confidence-
rated boosting using the probability of correctness of
the prediction may lead to improvements. But clearly
LP formulations are tractable using column genera-
tion, and should be the subject of further research.

Acknowledgements

This material is based on research supported by Mi-
crosoft Research, NSF Grants 949427 and I1S-9979860,
and the Furopean Commision under the Working
Group Nr. 27150 (NeuroCOLT?2).

References

Anthony, M., & Bartlett, P. (1999). Learning in neu-
ral networks : Theoretical foundations. Cambridge
University Press.

Bauer, E., & Kohavi, R. (1999). An empirical com-
parison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36, 105
139.

Bennett, K. P. (1999). Combining support vector and
mathematical programming methods for classifica-
tion. Advances in Kernel Methods — Support Vec-
tor Machines (pp. 307-326). Cambridge, MA: MIT
Press.

Bennett, K. P., & Demiriz, A. (1999). Semi-supervised
support vector machines. Advances in Neural Infor-
mation Processing Systems 11 (pp. 368-374). Cam-
bridge, MA: MIT Press.

Breiman, L. (1999). Prediction games and arcing al-
gorithms. Newral Computation, 11, 1493-1517.

CPLEX (1994). Using the CPLEX callable library.
CPLEX Optimization Incorporated, Incline Village,
Nevada.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines. Cambridge

University Press.

Mangasarian, O. L. (2000). Generalized sup-
port vector machines. Advances in Large Mar-
gin Classifiers (pp. 135-146). Cambridge, MA:
MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-
reports/98-14.ps.

Murphy, P., & Aha, D. (1992). UCI repository of ma-
chine learning databases. Department of Informa-
tion and Computer Science, University of California,
Irvine, California.

Nash, S., & Sofer, A. (1996). Linear and nonlinear
programming. New York, NY: McGraw-Hill.

Quinlan, J. (1996). Bagging, boosting, and C4.5. Pro-
ceedings of the 13th National Conference on Artifi-
cial Intelligence. Menlo Park, CA: AAAI Press.

Rétsch, G., Scholkopf, B., Smola, A., Mika, S., On-
oda, T., & M uller, K.-R. (1999). Robust ensemble
learning. Advances in Large Margin Classifiers (pp.
208-222). Cambridge, MA: MIT Press.

Rétsch, G., Scholkopf, B., Smola, A.; M uller, K.-R.,
Onoda, T., & Mika, S. (2000). v-arc ensemble learn-
ing in the presence of outliers. Advances in Neu-

ral Information Processing Systems 12. Cambridge,
MA: MIT Press.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W. S.
(1998). Boosting the margin: A new explanation
for the effectiveness of voting methods. Amnnals of
Statistics, 26, 1651-1686.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C.,
& Anthony, M. (1998). Structural risk minimization
over data-dependent hierarchies. IEEFE Transactions
on Information Theory, 44, 1926-1940.

Shawe-Taylor, J., & Cristianini, N. (1999). Margin dis-
tribution bounds on generalization. Proceedings of

the European Conference on Computational Learn-
ing Theory, BuroCOLT’99 (pp. 263-273).

Zhang, T. (1999). Analysis of regularised linear func-
tions for classification problems (Technical Report
RC-21572). IBM.

